inflection$39108$ - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

inflection$39108$ - перевод на греческий

POINT ON A GRAPH WHERE ALL DERIVATIVES OR PARTIAL DERIVATIVES ARE ZERO
Horizontal inflection point; Horizontal point of inflection; Stationary value; Extremal; Extremals; Stationary points
  • A graph in which local extrema and global extrema have been labeled.
  • The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are [[inflection point]]s.

inflection      
n. κλίση

Определение

Inflection
·noun A bend; a fold; a curve; a turn; a twist.
II. Inflection ·noun ·same·as Diffraction.
III. Inflection ·noun The act of inflecting, or the state of being inflected.
IV. Inflection ·noun A departure from the monotone, or reciting note, in chanting.
V. Inflection ·noun Any change or modification in the pitch or tone of the voice.
VI. Inflection ·noun A slide, modulation, or accent of the voice; as, the rising and the falling inflection.
VII. Inflection ·noun The variation or change which words undergo to mark case, gender, number, comparison, tense, person, mood, voice, ·etc.

Википедия

Stationary point

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name).

For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero).

Stationary points are easy to visualize on the graph of a function of one variable: they correspond to the points on the graph where the tangent is horizontal (i.e., parallel to the x-axis). For a function of two variables, they correspond to the points on the graph where the tangent plane is parallel to the xy plane.